
OWASP Top 10

Applications Security

PyCon Argentina 2018

Objectives
● Generate awareness and

visibility on web-apps security

● Set a baseline of shared

knowledge across the

company

● Trigger security-improving

tasks in the projects
Why are we here /

● NPO focused on improving the
security of software

● make software security visible
● individuals and organizations are

able to make informed decisions

PyCon Argentina 2018

OWASP / www.owasp.org

● A community that issues software
tools and knowledge-based
documentation.

Open Web Application Security Project

http://www.owasp.org

Broad consensus about

the most critical

security risks to web

applications.“
“

● PDFs
● cheatsheets
● translations
● tools
● etc

OWASP Top 10

Los más buscados

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Backend:

String query = "
 SELECT *
 FROM accounts
 WHERE custID='
"

+ request.getParameter("id")
+ "'";

Browser:

http://example.com/app/accountView?id=XXX

Backend:

String query = "
 SELECT *
 FROM accounts
 WHERE custID='XXX'

";
DBSQL

Some data...

1 - Injection A1:2017-Injection

Backend:

String query = "
 SELECT *
 FROM accounts
 WHERE custID='
"
+ request.getParameter("id")
+ "'";

Browser:

http://example.com/app/accountView?id=' or '1'='1

Backend:

String query = "

 SELECT *

 FROM accounts

 WHERE True

";

DBSQL

ALL data...

1 - Injection A1:2017-Injection

1 - Injection A1:2017-Injection

2 - Broken Authentication
A2:2017-Broken Authentication

Web-app
Backend

https://

AUTH

Automated attacks allowed?
(brute force, credential stuffing)

Weak passwords allowed?
(such as "Password1" or "123456“)

Weakly encrypted/hashed passwords?
(see A3:2017-Sensitive Data Exposure).

Weak password recovery process?
(such as "knowledge-based answers")

Multi-factor authentication?

Ineffective
session/token
management?
(rotation, invalidation)

Session data in the URL?

Web-app
Backend

https://

Does the app not verify if the
received server certificate is valid?

Is proper key management
or rotation missing?

Is sensitive data stored in clear text?
(including backups and logs)

Are there default or weak
cryptographic algorithms used?
(by default or in older code)

Is encryption not enforced?
(browser security directives or
headers missing)

data transmitted in clear text?
(Verify internal & external
traffic)

3 - Sensitive Data Exposure
A3:2017-Sensitive Data Exposure

Extract data from the server:
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Probe the server's private network:
<!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>

Attempt a denial-of-service attack:
<!ENTITY xxe SYSTEM "file:///dev/random" >]>

4 - XML External Entities A4:2017-XXE

import django.contrib.auth

The main threat to a Django application is between the monitor and
keyword

(it’s you, the developer)

5 - Broken Access Control
A5:2017-Broken Access Control

Clients

Cloud or HW

SO

Services
DB

MQ KVS

ServicesServices

API

6 - Security Misconfiguration
A6:2017-Security Misconf.

Clients

Cloud or HW

SO

Services
DB

MQ KVS

ServicesServices

APIDEBUG = True

6 - Security Misconfiguration
A6:2017-Security Misconf.

7 - Cross-Site Scripting (XSS)
A7:2017-XSS

serialization Insecure
Deserialization

import pickle

8 - Insecure Deserialization
A8:2017-Insecure Deserialization

serialization Insecure
Deserialization

import pickle# don't import pickle

8 - Insecure Deserialization
A8:2017-Insecure Deserialization

9 - Using Components With
Known Vulnerabilities
A9:2017-Using Components with Known Vulnerabilities

Clients

Cloud or HW

SO

Services
DB

MQ KVS

ServicesServices

API

10 - Insufficient Logging & Monitoring
A10:2017-Insufficient Logging & Monitoring

Risk Factor based on statistics and experience

Other not in the top-10

● Cross-Site Request Forgery
(CSRF)

● Uncontrolled Resource
Consumption
('Resource Exhaustion', 'AppDoS')

● Unrestricted Upload of File with
Dangerous Type

● User Interface (UI)
Misrepresentation of Critical
Information
(Clickjacking and others)

● Unvalidated Forward and
Redirects

● Improper Control of
Interaction Frequency
(Anti-Automation)

● Inclusion of Functionality from
Untrusted Control Sphere
(3rd Party Content)

● Server-Side Request Forgery
(SSRF)

Abducción Julio 2018

And more https://imgs.xkcd.com/comics/2018_cve_list.png

https://imgs.xkcd.com/comics/2018_cve_list.png

Preguntas?
Francisco Capdevila

francisco.capdevila@mercadolibre.com
@pancho_jay

Carlos Matías de la Torre
carlos.delatorre@mercadolibre.com

@py_litox

https://twitter.com/pancho_jay
mailto:carlos.delatorre@mercadolibre.com
https://twitter.com/py_litox

Muchas Gracias

